La nascita dell’approccio predittivo
L’idea alla base della manutenzione e del monitoraggio è quella di garantire l’efficienza e la disponibilità degli impianti, ed è una prassi antica quanto le stesse macchine. In principio la manutenzione si basava su interventi non programmati a seguito del verificarsi di guasti (manutenzione a rottura); successivamente venne introdotta la schedulazione degli interventi basata sulle specifiche dei costruttori e sull’esperienza degli operatori (manutenzione preventiva).
Durante la seconda guerra mondiale l’inglese Conrad Hal Waddington, che coordinava una squadra incaricata di organizzare il mantenimento degli aeromobili della Royal Air Force, effettuò uno studio sulla disponibilità degli aeromobili, arrivando alla sorprendente conclusione che il tasso di fallimento e/o rottura, in molti casi, era più alto immediatamente dopo un intervento di manutenzione preventiva.
Tali interventi risultavano spesso invasivi, ad esempio potevano richiedere il disassemblaggio di parti del velivolo, e sembravano facilitare l’instaurarsi di ulteriori guasti portando più svantaggi che benefici. Questo fenomeno fu successivamente soprannominato “Effetto Waddington” e aprì le porte al concetto di monitoraggio basato sulle condizioni della apparecchiatura. La soluzione adottata da Waddington difatti prevedeva la schedulazione della manutenzione non più in base ad un approccio di tipo preventivo, ma in base alle condizioni fisiche dell’apparecchiatura e alla frequenza del suo utilizzo. Con questo stratagemma Waddington migliorò notevolmente la disponibilità degli aeromobili e fondò le basi della manutenzione basata sul monitoraggio delle grandezze caratteristiche dell’asset. Negli anni 60 nel settore aeronautico si sviluppò il concetto della RCM (Reliability Centered Maintenance). I principi della RCM miravano a incrementare rapidamente e sostenere una crescita della disponibilità e della sicurezza degli aeromobili. Questi principi supportavano anche la determinazione dei fabbisogni di manutenzione delle nuove apparecchiature in maniera da garantire affidabilità, velocità e precisione nella diagnosi, al fine di contribuire ad una significativa riduzione dei costi.
I concetti legati alla RCM hanno contribuito allo sviluppo delle metodologie della manutenzione predittiva e di tutte le tecnologie ad essa associate.
All’inizio degli anni 90 grazie al contributo di John Moubray - RCM II, i principi della Reliability Centered Maintenance furono applicati a molte realtà industriali facilitando lo sviluppo su larga scala della manutenzione predittiva.
Monitoraggio e diagnostica: stato attuale e potenziali sviluppi
Monitoraggio e diagnostica sono due attività diverse ma profondamente legate e devono essere coordinate in modo efficiente per massimizzare i benefici della manutenzione predittiva. Per la maggior parte dei modi di guasto sono diversi i controlli che permettono di identificare la presenza del guasto stesso: vibrazioni, ultrasuoni, analisi termografiche, analisi degli olii lubrificanti, misure elettriche, ecc. Questi rilievi devono essere integrati ed utilizzati in modo coerente per ottimizzare il monitoraggio al fine di garantire la migliore capacità diagnostica.
Un sistema di monitoraggio e diagnostica on-line si basa sulla acquisizione continua delle variabili caratteristiche relative al funzionamento delle macchine al fine di identificare e monitorare l’insorgere delle anomalie. Questi sistemi di diagnostica sono finalizzati a garantire un elevato livello di affidabilità degli impianti, permettendo di pianificare interventi di manutenzione in tempo utile.
Molti dei sistemi di monitoraggio attualmente presenti sul mercato si basano sulla acquisizione dei segnali di vibrazione e di altre grandezze fisiche come la temperatura, la velocità angolare, ecc.
I sistemi di monitoraggio più semplici, utilizzano un valore di picco o globale (RMS) e lo confrontano con un livello di allarme. Un valore globale è un numero che rappresenta il contributo totale delle vibrazioni in un range di frequenza. Se la vibrazione raggiunge valori elevati, o aumenta improvvisamente, significa che la macchina ha raggiunto una condizione critica ed è richiesto un intervento di troubleshooting per identificare con precisione le cause dell’aumento anomalo. Il monitoraggio dei valori globali presenta però delle limitazioni dovute alla mancata identificazione delle singole forzanti che contribuiscono al valore globale.
I sistemi di monitoraggio avanzati prevedono la possibilità di effettuare l’analisi dei segnali acquisiti e di applicare degli algoritmi dedicati non solo per generare alert ma anche per fornire una diagnosi dettagliata dei modi di guasto. Ad esempio dall’analisi della forma d’onda e dello spettro di vibrazione si è in grado di determinare la tipologia del difetto, come usura dei cuscinetti, sbilanciamento, disallineamento, usura di ingranaggi, ecc.
Attualmente, in accordo con le linee guida dettate dalla Industry 4.0, i sistemi di monitoraggio più evoluti sono concepiti per acquisire grandezze fisiche (vibrazioni, grandezze elettriche, ecc.) e variabili di processo provenienti da sistemi di automazione asserviti agli impianti, ad esempio, drivers, PLC, DCS, SCADA, ecc. In questa maniera vengono raccolte grandi quantità di dati (Big Data) che possono essere storicizzati su un cloud dedicato e processati correlandoli tra loro al fine di migliorare la diagnostica e ottimizzare il processo produttivo, utilizzando ad esempio algoritmi di Machine Learning.
Manutenzione prescrittiva: sistemi di monitoraggio basati su intelligenza artificiale
“E se volessimo non solo prevedere i problemi, ma prescrivere soluzioni?” Questa è la premessa della manutenzione prescrittiva, tappa dell’Industry 4.0, che prevede modelli di tipo predittivo con la capacità di fornire un supporto alle decisioni, utilizzando anche le potenzialità della Intelligenza Artificiale.
La combinazione delle tecniche di Intelligenza Artificiale, Machine Learning, sistemi di diagnostica evoluti e interfacce utente sempre più interattive (ad esempio attraverso l’utilizzo di Chatbot) garantirà l’evoluzione della gestione della manutenzione nelle realtà industriali. Manutenzione e produzione non saranno più realtà distinte ma fortemente interconnesse, con l’obbiettivo comune di scambiarsi informazioni al fine di ottimizzare il processo produttivo.
Vale la pena ricordare che i concetti legati alla manutenzione prescrittiva rappresentano l’eccellenza del maintenance management. Ad oggi, purtroppo, sono molte le realtà produttive nelle quali non è ancora stato implementato un programma di gestione della manutenzione strutturato ed in linea con l’evoluzione delle tecnologie predittive.
In questa ottica ISE Srl - www.iseweb.net, azienda con una expertise basata su 20 anni di attività on site in molti contesti industriali nazionali ed internazionali, si propone come partner per migliorare l’efficienza e l’affidabilità degli impianti, offrendo servizi di Reliability & Maintenance Consulting, PdM & Condition Monitoring e tecnologie predittive all’avanguardia.
Nicola Giannini, Sales & Customer Service Engineer, ISE Srl